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Abstract – Understanding the dynamics of material objects advected by turbulent flows is a long-
standing question in fluid dynamics. In this perspective article we focus on the characterization
of the statistical properties of non-interacting finite-sized massive spherical particles advected
by a vigorous turbulent flow. We study the fluctuations and temporal correlations of particle
accelerations and explore their behaviours with respect to the particle size and the particle mass
density by means of fully resolved numerical simulations. We observe that the measured trends
cannot be interpreted as the simple multiplicative combination of the two dominant effects: the
spatial filtering of fluid accelerations and the added-mass–adjusted fluid-to-particle density ratio.
We argue that other hydrodynamical forces or effects, e.g., preferential flow sampling, have still a
significant role even at the largest particle sizes, which reach here the integral scale of turbulence.

perspective Copyright c© 2024 EPLA

Introduction. – Fluid dynamics turbulence is a last-
ing challenge in science. Rather than representing a sin-
gle fundamental question —the problem’s definition itself
changed over epochs and disciplines [1]— it is a faceted
topic with ramifications into a plethora of open issues and
applications. Among the many problems connected to tur-
bulent flows a long-standing one concerns the description
of the transport by the flow of material objects [2]. Clearly,
the study of the forces exerted on a body immersed in a
flow is a classic topic in the broader field of fluid dynamics,
and many researchers have devoted their attention to it.

When considering the case of spherical bodies, we can
refer to Stokes’s work on drag force in creeping flows, fol-
lowed by studies by Oseen, Boussinesq, and Basset on
inertial and unsteady corrections (history force) to drag.
Tchen, Corrsin, and Lumley investigated the pressure gra-
dient force, while Auton focused on added-mass and lift
forces in the context of rotational potential flows (see [3]
for an historical overview). The unified modern formu-
lation on the dynamics of a spherical particle in an un-
steady and non-uniform viscous flow is due to Maxey and

(a)E-mail: chaosun@tsinghua.edu.cn
(b)E-mail: enrico.calzavarini@univ-lille.fr
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Riley and Gatignol (MRG equation) [4,5]1. However, the
complexity of the problem increases considerably when the
carrying flow is turbulent, due to its non-smooth and er-
ratic characteristics both in time and space. In this case,
any kind of quantitative investigation must embrace the
statistical approach [8,9].

In the last decades, a large body of studies has been
dedicated to the problem of particles advected by turbu-
lence. This is largely attributed to the emerging methods
of experimental fluid/particle tracking by digital cameras
[10–12] and by the ever increasing high-performance nu-
merical simulations [8]. While the phenomenology is
presently relatively well explored for particles whose size
is of the order of the dissipative scale and the associated
particle Reynolds number is small, there are fewer studies
on less idealized objects of larger size [13–20] or with non-
regular shape [21,22] or inhomogeneous mass density [23].
The question is important for applications, among many
we wish to mention the topical issue of the dispersion in
turbulent ocean of plastic debris [24]. Such waste mate-
rials encompass ranges of scales from the dissipative to
the inertial ones, have a variety of shapes and buoyant

1The same equation, without Faxén corrections [6], was derived
by Shu-Tang Tsai in 1957 and published in Chinese language, see [7]
for its recent translation.
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properties [25] and can undergo turbulence-induced frag-
mentation [26]. Advances in the comprehension of the
problem are crucially linked to a better insight into their
translational dynamics.

In this article we aim at performing a step forward in the
understanding of this complex phenomenon. We aim at
highlighting how the particle mass density affects the ac-
celeration properties for particles whose size is larger than
the dissipative scale of turbulence. Our approach is com-
putational, and makes use of numerical simulations that
are capable to resolve all the spatio-temporal scales active
in the problem. Due to the wide range of scales at work,
these simulations are possible at the price of considering
only single (or at best few non-interacting) particles and
moderate turbulent flow intensities. Despite this limita-
tion, our study allows to identify trends that are expected
to be valid also at larger turbulent flow Reynolds numbers
and it provides new benchmark data for future studies.

Theoretical considerations. – Recent experimen-
tal and numerical studies have shown that the transla-
tional [18,27], and in part the rotational [28], statistical
properties of inertial-scale–sized neutrally buoyant par-
ticles advected by a turbulent flow can be explained in
terms of a coarse-graining effect of the underlying tur-
bulent flow. In other words the particle acceleration be-
haves —statistically— the same as the spatially filtered
fluid acceleration field unperturbed by the particle. This
mechanism corresponds to assuming that the particle feed-
back on the carrying turbulent flow is negligible. A neu-
tral particle has on average a small slip velocity compared
to the surrounding fluid [29], it is therefore reasonable
to assume that the dissipative (surface) force associated
to viscous drag is sub-leading with respect to the inertial
(volumetric) one. In summary it seems reasonable to state
that the acceleration of a particle of typical size d goes as
ad ∼ 〈Dtu〉V , where Dtu = ∂tu + u · ∇u is the fluid ac-
celeration field and 〈. . .〉V denotes a spatial average over
a volume (V ) equivalent to the one of the particle.

When the particle is non-neutrally buoyant this scenario
is complicated by two factors, on the one hand the dif-
ferent inertia between the particle and the fluid tends to
suppress/enhance (respectively, for heavy/light particles)
the fluid accelerations of the surrounding carrying flow.
This effect is not plainly proportional to fluid-to-particle
density ratio, ρf/ρp, but is instead proportional to the
parameter β = 3ρf/(ρf + 2ρp) because of the added-mass
force exerted by the fluid on the particle [30]. Note that
β varies in the interval [0, 3], and the limits correspond to
the cases of very massive particles (ballistic limit) and of
very light particles where the inertia is all in the displaced
surrounding fluid (such as for the case of air bubbles in
water [31]); β = 1 identifies the neutrally buoyant case.
The second factor is the occurrence of Archimedes buoy-
ancy, which leads to an extra acceleration term of the form
(1 − β)g. In this study for simplicity we neglect the ef-
fect of gravity, and this is always possible for sufficiently

intense turbulent flows2. Adding together the mentioned
volume and surface forces, the following model has been
put forward for the motion of finite-sized particles [32,33]:

ẍ=β

(
〈Dtu〉V +

12 ν c(Red)
d2

(〈u〉S −ẋ)
)

+(1 − β)g. (1)

This is an adaptation of the MRG equation, which re-
tains the so-called Faxén terms [5], with the addition of
the empirical Shiller-Naumann drag correction c(Red) =
1 + 0.15Re0.687

d , where Red = ||〈u〉S − ẋ||d/ν is the in-
stantaneous particle Reynolds number and the omission
of the history force (justified for non-fastly settling par-
ticles [34]). The symbols 〈. . .〉S denotes, similarly to the
volume mean, a spatial average over a surface (S) equiv-
alent to the one of the particle. These averages quantifiy
the effect of the local flow non-uniformity at the scale of
the particle. If the particle is small, they account simply
for the effect of the curvature (i.e., the Laplacian) of the
local flow velocity and acceleration fields, if the particle is
large, they include higher even-order spatial derivatives,
see also [35]. This model, known as Faxén corrected (FC)
model [32,33], predicts qualitatively a series of trends in
the single- and two-time acceleration statistics, that will
be discussed later on in this article.

We can now ask: what are the statistical features of
the particle acceleration in a turbulent flow for the non-
neutral (β �= 1) case? When particles are below the dissi-
pative scale and the flow accelerations are large compared
to gravity, the Faxén and the Shiller-Naumann corrections
can be neglected in eq. (1) and expanding in the small
parameter d2/(12νβ) � 1(the drag response time) one
obtains:

ẍ � Dtu +
d2

12νβ
(β − 1)

(
Dtu · ∇u + D2

t u
)
. (2)

This says that the particle acceleration variance begins to
deviate from the one of a fluid tracer quadratically with
its size d and only when β �= 1. For finite-sized particles a
similar perturbative estimate is not possible. However, the
drag response time becomes long and one can assume that
the associated force becomes negligible. All these consid-
erations lead us to guess that inertia —the term β〈Dtu〉V

in (1)— is the leading effect in determining the statistics
of the acceleration of large particles. This study aims at
testing this hypothesis and discussing its implications.

Methods: fully resolved numerical study. – We
address the above questions by solving the fluid-particle
coupled problem which comprises the incompressible
Navier-Stokes equations for the fluid dynamics and the
Newton-Euler equation for the particle motion, with the
addition of no-slip boundary conditions at their interfaces.
The numerical methods, based on the coupled lattice-
Boltzmann and immersed-boundary algorithms, have been

2However, note that by increasing the particle size in a fixed in-
tensity turbulent flow, the relative importance of the coarse-grained
fluid acceleration decreases with respect to the buoyancy.
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Table 1: Parameter and relevant scales of the simulated
turbulent flow. N3: number of spatial grid points (the larger
resolution is used for β > 1 particles); η: Kolmogorov dissipa-
tion length scale in grid space units Δx; τη: Kolmogorov time
scale in time-step units Δt, L: integral scale; TL: large-eddy
turnover time; λ: Taylor micro-scale; Reλ: Taylor-Reynolds
number.

N3 η/Δx τη/Δt L/η TL/τη λ/η Reλ

1283(2563) 2.1(4.2) 153(607) 24.1 12.4 11.3 32

already described elsewhere [28,36]. For the present study,
we carried on new validations on the dynamics of non-
neutrally buoyant particles. Besides resolution conver-
gence checks we verified that in the presence of gravity
the particle trajectory in still fluid agrees with the known
settling dynamics. The spatial domain where the turbu-
lent flow takes place is a tri-periodic cube. The Taylor-
scale–based Reynolds number is kept at Reλ � 32 by a
constant-power large-scale forcing (same as in [37]). The
values of the relevant numerical/physical turbulent flow
scales are reported in table 1. The control particle param-
eters are varied in the range d/η = [6.5, 18.7], which com-
prises the inertial range of the considered turbulent flow,
and ρp/ρf = [0.4, 10] (corresponding to β = [0.14, 1.67]).
The particles are evolved for O(102) large-eddy turnover
times. Each simulation contains just one particle, but
multiple independent runs are performed for each parti-
cle case in order to improve the statistical convergence of
the analysis.

Results on acceleration statistics. –

Acceleration variance. The first quantity we fo-
cus on is the single-component acceleration variance,
〈a2

d,i〉, where 〈. . .〉 denotes here the time and ensem-
ble average over independent particle trajectories (all the
measurements are also given in table 2). Figure 1(a) dis-
plays the trends for such a quantity (normalized by the
fluid flow acceleration variance) with respect to the par-
ticle diameter (in dissipative scale units) and for parti-
cle sets with different density ratios (β). For the neutral
case, β = 1, the acceleration intensity progressively de-
creases from the unit value for growing particle diame-
ters, this is due to the spatial filtering effect mentioned
above. This feature has been already highlighted in ex-
periments [18,27] and also reproduced in fully resolved
simulations [28,38]. A one-dimensional estimate based on
the Kolmogorov 1941 (K41) turbulence theory suggests
that 〈a2

d,i〉 ∼ 〈〈Dtui〉2V 〉 ∼ ((δdu)2/d)2 ∼ d−2/3, where δdu
stands for a typical increment of velocity over a scale d. It
has been shown both experimentally and numerically that
〈a2

d〉 ∼ dα with the exponent α varying between −4/3 at
low Reynolds (i.e., Reλ ≤ 100 as here) [28,38] and −2/3
for developed turbulence [18,27].

The measurements for β �= 1, which represent the
main novelty of the present study, show that the particle

Table 2: 〈a2
i 〉/〈Dtu

2
i 〉 single Cartesian component particle ac-

celeration variance normalized by the fluid-tracer acceleration
variance for various β and d/η values at Reλ = 32.

β
d/η 6.5419 9.3444 11.2119 13.0785 15.8774 18.6739

1.6667 0.4538 0.4121 0.2400 0.2499 0.2185 0.1821
1.3636 0.3761 0.3265 0.2517 0.2448 0.1505 0.1610
1.0000 0.2749 0.2118 0.1736 0.1475 0.1204 0.0974
0.7500 0.2241 0.1572 0.1311 0.1045 0.0905 0.0683
0.5000 0.1768 0.1326 0.1020 0.0871 0.0641 0.0530
0.2727 0.1547 0.0977 0.0788 0.0605 0.0453 0.0351
0.1429 0.1308 0.0740 0.0540 0.0449 0.0337 0.0248

Fig. 1: (a) Particle acceleration variance normalized by fluid-
tracer acceleration variance as a function of the particle diam-
eter (d) in dissipative units η. Data for density ratios β are
displayed. The corresponding results for the point-point parti-
cle (PP) model are reported (solid line). Bec(β = 1) indicates
numerical measurements from [38]. (b) Same data with the
normalization β2〈(Dtui)

2〉 for the acceleration variance, this
way the PP model tends asymptotically to the unit value. Note
that the fully resolved data with different β do not overlap.

acceleration grows with β. In order to contrast the den-
sity ratio and the particle-size effect we also trace in
fig. 1(a) the results for point-like particles (solid lines).
The point-particle (PP) model includes the added mass
but does not account for the spatial filtering. It can be
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Fig. 2: (a) Particle acceleration variance normalized by the
acceleration variance of the neutrally buoyant particle of the
corresponding size 〈a2

d,β=1〉 as a function of the particle di-
ameter (d) in dissipative units η. Note that the curves
are approximately horizontal for the same β-particle families.
(b) Same data with the normalization 〈a2

d,β=1〉 for the accelera-
tion variance. Although curves get closer, they do not collapse
on each other.

obtained from (1) by replacing the volume and surface av-
erages by the point values and by setting c(Red) = 1 [32].
While in the limit of small particles the PP model de-
parts weakly from the fluid acceleration value (as sug-
gested by eq. (2)), in the large-size limit it converges
to 〈a2

d〉 � β2〈(Dtui)2〉 [32]. This is better evidenced in
fig. 1(b), where the acceleration variances are normalized
by β2〈(Dtui)2〉 and all the PP data converge to the same
plateau. Conversely, the fully resolved simulation results
tend to vanish in the asymptotic limit due to the pro-
gressively enhanced smoothing by filtering of turbulent
fluctuations.

The effect of fluid-to-particle density ratio on the ac-
celeration variance 〈a2

d〉 can be examined by dividing it
by the acceleration variance of the neutral particle of the
corresponding size 〈a2

d,β=1〉. This is shown in fig. 2(a), one
can notice that the data still depend on the values of β.
At this point is worth testing the hypothesis

〈a2
d〉 � β2〈a2

d,β=1〉. (3)

This is done in fig. 2(b). Although the trend suggests
that the curves might overlap for very large particles, be-
yond the integral scale of turbulence, L � 24η, the lack of
collapse of the curves can be interpreted as an evidence of

the non-multiplicative effect of the added mass and spatial
filtering on inertial-scale particles. We note that this mul-
tiplicative effect was instead true in the FC model studied
in [32], see in particular their fig. 1(a) where with a similar
rescaling all data collapse for large particle diameters. The
origin of this discrepancy with respect to the FC model
remains to be understood. In particular it would be inter-
esting to check if it is due to the non-linear drag. Indeed
the Shiller-Naumann correction was not included in [32],
although it was considered, only for neutrally buoyant par-
ticles, in the FC model studied in [33] where it was found
to have a negligible effect on the acceleration properties.

Acceleration temporal correlations. The study of the
temporal correlation functions of the acceleration allows
to further reinforce the observations made for the instan-
taneous acceleration variance. We focus on the integral
time, TI , here defined as the integral of the autocorrela-
tion function from time zero to the time it first reaches
the null value (i.e., first zero-crossing time T0):

TI ≡
∫ T0

0

C(τ)dτ, C(τ) ≡ 〈ai(t + τ)ai(t)〉
〈(ai(t))2〉 . (4)

Figure 3(a), (b) shows the C(τ) correlations functions for
the two small/large particle limiting case in this study,
i.e., for d/η = 6.5 (a) and d/η = 18.7 (b). The integral
correlation times computed from these curves grow with
the particle size and decreases with β, see fig. 3(c) (all
TI measurements are also reported in table 3). The first
trend is usually rationalized in terms of the coarse-graining
hypothesis [39]. A particle of size d is subjected to turbu-
lence fluctuations of that scale, this corresponds to an eddy
turnover time τd = d/δdu ∼ d2/3. This prediction is only
approximately true for neutrally buoyant particles. In
fact, similarly to the trends observed for the acceleration
variance also in the case of the correlation time the mea-
sured scaling τd ∼ dγ has a senstive Reynolds dependence,
it is observed that γ ≤ 2/3 at small Taylor-Reynolds num-
ber [28,38], while it is 2/3 ≤ γ ≤ 1 at large Reynolds [18].

The above argument cannot be straightforwardly ex-
tended to non-neutral particles. A possible approximate
adaptation is presented in the following. We indicate with
Xa = 1

2 〈Dtu
2〉1/2τ2

a the length spanned by a fluid-particle
over the time (τa) during which the acceleration is corre-
lated (and so approximately constant). Such a length can
be travelled by a finite-sized inertial particle over a time

τd =
√

2Xa/〈a2
d〉1/2. Now, using the hypothesis (3) one

obtains

τd =
τd,β=1√

β
∼ d2/3

√
β

. (5)

This prediction is tested in fig. 3(d), we observe that while
the size dependence of the correlation time for any particle
seems to be properly normalized by the neutral case (i.e.,
the coarse-graining hypothesis holds true), the density de-
pendence is only approximately explained in terms of the
above scaling. The collapse is better for the case of light
particles were the above argument is more fitting.
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Fig. 3: Single-component correlation function acceleration vari-
ance for particles diameter (a) d/η = 6.5 and (b) d/η = 18.7.
(c) Integral correlation time of the particle acceleration vs. the
particle size, both expressed in dissipative units, for different
β-particle families. (d) Integral correlation time divided by
TI,β=1/

√
β vs. the particle size.

Table 3: TI/η, integral correlation time of the particle acceler-
ation normalized by the Kolmogorov time scale for various β
and d/η values at Reλ = 32.

β
d/η

6.5419 9.3444 11.2119 13.0785 15.8774 18.6739

1.6667 1.2126 1.5015 1.6117 1.6425 1.7564 2.0205
1.3636 1.4170 1.5184 1.6928 1.9592 1.9589 2.1629
1.0000 1.6263 1.7011 1.9216 2.0704 2.2102 2.4419
0.7500 1.7408 1.8971 2.0315 2.2539 2.5249 2.6728
0.5000 1.8086 2.0344 2.2258 2.4176 2.6733 3.0411
0.2727 2.1082 2.5053 2.6268 2.7740 3.2323 3.6138
0.1429 2.7127 3.1644 3.3539 3.5064 401050 4.5701

Acceleration’s higher statistical moments. Last we
consider statistical properties beyond the second order.
This can be done by examining the trends in the shape of
the probability density functions (PDF) of the acceleration
normalized by its standard deviation. These functions are
reported in fig. 4; panel (a) shows the curves for the small-
est particles, while panel (b) for the largest particles ex-
plored in this study. The trend towards a Gaussianization
of the accelerations is clear when the particle size is in-
creased, this feature was also predicted by the FC model
simulations [32]. A similar tendency is observed upon in-
creasing the particle mass density: PDF of heavy particles
have shorter tails than neutral particles of the same size,
on the contrary light particles tend to have extreme accel-
erations. This trend is evident for the smallest particles,
and agrees with former results from PP model simula-
tions [40], while it appears here negligible for the largest
particles.

More robust conclusions can be drawn from the
flatness of the acceleration, F (ad) = 〈a4

d〉/〈a2
d〉2.

Theoretical considerations suggest that 〈a4
d〉/〈a2

d〉2 ∼
〈(δdu)8〉/〈(δdu)4〉2 ∼ dζ8−2ζ4<0, where ζp indicates the
scaling exponent of the velocity structure functions of
order p, i.e., 〈(δdu)p〉 ∼ dζp . The value of the expo-
nent F (ad) ∼ dφ can be estimated in various ways, it is
φ � −0.44 from the Kolmogorov-Obukhov 1962 model [41]
and φ � −0.56 with She-Lévêque parametrization [42].
Measuring a scaling behaviour for F (ad) is delicate as it
requires large datasets. Furthermore, similar to the ac-
celeration variance, large Reynolds numbers are needed in
order to establish a wide inertial range. Although some
experiments and simulations did not observe any scaling
trend (φ = 0) [15,27,38,39], there have been recently in-
creasing evidences towards a reduction of the flatness with
size, ref. [18] measured φ � −0.5 ± 0.1 for inertial range
neutrally buoyant particles, ref. [43] observed it for bub-
bles in turbulence. This trend is also supported by the FC
model. The reduction of flatness with particle size increase
is confirmed by the present fully resolved simulations (see
fig. 4, panel (c)). Furthermore, we observe a weak but
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Fig. 4: PDF of particle acceleration normalized by their stan-
dard deviation for (a) d/η = 6.5 and (b) d/η = 18.7. PDF of
fluid tracers acceleration (bold solid line) and Gaussian distri-
bution (dashed). (c) Flatness of the acceleration of particles
vs. their size. Data are normalized by the fluid acceleration
flatness, F (Dtui) � 6. The dashed line corresponds to the
Gaussian value. Error bars are estimated from the semidiffer-
ence of the flatness factors computed from two half-samples of
the full dataset.

detectable flatness amplification with β. This was pre-
viously observed only for dissipative scale particles both
in experiments and simulations [40]. Its physical inter-
pretation lies in the phenomenon of preferential sampling:
light particles explore preferentially vortex cores where the
fluid centripetal acceleration is large, while heavy particles
sample the outside of vortices which are calmer regions as

far as acceleration is concerned, and this is reflected on
their normalized accelerations PDF [44,45]. This points
to the fact that preferential sampling is a small but non-
vanishing effect for inertial-scale particles.

Conclusions and perspectives. – Non-interacting
finite-sized massive spherical particles advected by a vig-
orous turbulent flow have been studied by means of fully
resolved numerical simulations. We examined the single-
and two-time statistical properties of particle accelerations
and explored their behaviours with respect to the particle
size and to the particle mass density. In these conditions
the inertial forces dominate over the dissipative ones. This
study confirms all the tendencies predicted by the coarse-
graining picture, namely the fact that both the acceler-
ation variance and its flatness decrease with the particle
size and the opposite for the acceleration correlation time.
Given the limited extension of the inertial range at the
present Reynolds number (Reλ = 32) it is difficult to esti-
mate reliable scaling laws as a function of the particle di-
ameter d. However, it seems that the observed behaviours
deviate systematically from the expected scaling laws de-
rived from the values of the velocity structure function
exponents ζp. This point is delicate and requires further
attention. It might be that the scaling laws derived from
ζp only holds asymptotically in Reλ, or it could be that
systematic subleading deviations are present due to the in-
fluence of other hydrodynamics effects (such as the drag).
Looking at the particle density dependence, we have tried
to assess the hypothesis ad ∼ β〈Dtui〉V . Even if the par-
ticle acceleration increases with β, the observed trends
cannot be interpreted as the simple multiplicative combi-
nation of the two dominant terms: the spatial filtering of
fluid accelerations and the β fluid-to-particle density ra-
tio. A similar mismatch is observed in the dependence of
the correlation time with β, for which we provided a sim-
ple model. The study of the acceleration flatness indicates
that light particles are more intermittent than heavy ones
and this also occurs when their size is large. These features
suggest a role of preferential sampling of the flow by the
particles. This interpretation shall be put under scrutiny
in further studies, in fact in the context of inertial-scale
particles the evidences of preferential sampling and the re-
lated preferential clustering are still not univocal [20,46].

In the future it will be interesting to perform simu-
lations at larger Reynolds number and in larger domain
size in order to reduce the impact of finite inertial-range
and finite-domain effects present in our simulations. It
will also be interesting to develop new analysis techniques
for the detection of preferential sampling by inertial-scale
particles in turbulent flows. Furthermore, the statistical
relevance for large particles in turbulence of forces such as
history [47] or lift [48], remains to be clearly assessed.

These results may help in developing effective models
for the dynamics of large particles in different context
where particles are large with respect to the typical vari-
ation scale in the flow, such as drifters and floaters in the
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ocean [49] or rock crystals in magmatic chambers and pri-
mordial magma oceans [50].
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